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Abstract

An interest in the dynamic steady-state response of cantilever plates to harmonic lateral and rotational displacement
imposed along the clamped edge has arisen in connection with the projecting of lifetimes of electronic components
mounted on the plate lateral surface. Analytical type solutions to the problem are obtained by exploiting the superposition
method, a method which has previously been successfully exploited to obtain accurate solutions for free vibration
problems involving rectangular plates with various combinations of boundary conditions, point supports, etc. This newly
developed approach to free vibration problem analysis has been modified here to handle forced vibration problems, in
particular, to calculate response of cantilever plates of two different geometries to a range of base excitation frequencies.
The theoretical work has been supported by a careful parallel experimental program. Very good agreement between theory
and experiment has been encountered. It is expected that the theoretical approach described will provide a powerful
analytical means for obtaining accurate solutions to various other rectangular plate forced vibration problems.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper analytical type solutions are obtained for the steady-state response of undamped cantilever
plates subjected to lateral and torsional harmonic excitation along the clamped edge. The theoretical work is
accompanied by an experimental program which provides valuable test data for verification of the
computational procedure. The computational procedure itself is based on the method of superposition. This
method has been widely exploited to obtain accurate analytical type solutions for plate free lateral vibration
problems. See for example Ref. [1]. The present paper demonstrates for the first time how this same method
can be employed to solve rectangular plate steady-state forced vibration problems.

A fairly good discussion on the mathematical procedures employed heretofore to solve forced plate
transverse vibration problems is to be found in the work of Szilard [2]. He also provides a relevant list of
references. Analysis of forced vibration problems differ from those of free vibration (as will be seen) in that the
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Nomenclature X,y distances along plate coordinate axes
En dimensionless distances along plate co-
a, b rectangular plate edge dimensions ordinate axes, & = x/a, n = y/b
D plate flexural rigidity, equals EA*/12(1—v?) )2 dimensionless frequency of plate vibra-
E Young’s modulus of plate material tion, 1% = waz\/ p/D
h plate thickness /Ifz dimensionless frequency of plate edge
K number of terms used in solution series excitation, /7 = wa’\/p/D
V plate vertical edge reaction 0 mass of plate per unit area
vy dimensionless vertical edge reaction v Poisson ratio of plate material
along edges parallel to é-axis = V¢pb?/D v¥ =2—v
Ve dimensionless vertical edge reaction ¢ plate aspect ratio equals b/a
along edges parallel to y-axis = Va?/D w radian frequency of plate vibration
w plate lateral displacement divided by oy radian frequency of harmonic excitation
edge length “a”. imposed on plate driven edge

governing differential equation(s) are no longer homogeneous. As a result, particular solutions as well as
homogeneous solutions must be obtained for the equation system. So long as one restricts oneself to
rectangular plates with simple support on all edges the problems are greatly simplified and Navier type
solutions can usually be obtained [2]. It is pointed out by Szilard that beyond the above limited class of
problems analytical type solutions are usually difficult, if not impossible, to obtain. It is natural in such cases
to seek solutions by resorting to energy techniques. Also, with the advent of high speed digital computers and
finite element methods one can turn to numerical solutions.

The superposition method as applied here has the advantage that it can be employed to obtain accurate
converging solutions regardless of the combination of classical boundary conditions specified. One should also
recognize that solutions obtained by this method satisfy exactly the governing equation(s) throughout the
entire domain of the plate. Boundary conditions are satisfied to any desired degree of accuracy by increasing
the number of terms utilized in the solution.

An interest in the present problem has arisen in connection with design concerns related to the electronics
industry (Electronic Packaging). It is well known that highly accurate analytical type solutions have been
obtained for free vibration frequencies and mode shapes of cantilever plates by exploitation of the method of
superposition [3,4]. Here, it is shown how the same method can be extended to the domain of forced vibration
problems and, in particular, to the obtaining of forced vibration steady-state response of the base-driven
cantilever plate.

2. Mathematical procedure

In the earlier publications referred to above, the two free vibration mode families characteristic of cantilever
plates, those symmetric and those anti-symmetric about the plate centre line running perpendicular to the
plate clamped edge, were treated separately. The advantages of this approach were discussed. It is found that
in obtaining solutions to the general forced vibration problem addressed here, such a mode family delineation
is not usually applicable. In fact, it is found advantageous to begin the problem undertaken here by setting up
the general system of equations required to perform a general free vibration analysis of the entire plate. Later
it will be shown how this system of equations is modified in order to resolve the forced vibration problem of
interest.

2.1. The general free vibration analysis
A general free vibration analysis of the cantilever plate is achieved here by the superposition method.

In this method, following established procedures, a judiciously selected set of forced vibration problem
solutions (building blocks), which satisfy exactly the governing differential equation, are superimposed,
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one-upon-the-other, and driving coefficients appearing in these building block solutions are constrained in
such a way that the net solution thereby obtained satisfies, not only the governing differential equation,
but prescribed boundary conditions to any desired degree of accuracy. Some readers may wish to consult
Refs. [3,4] in order to familiarize themselves with procedures followed.

We begin by superimposing the four building blocks shown schematically in Fig. 1. Pairs of small circles
adjacent to an edge indicate that slip—shear conditions are imposed along this boundary, i.e., the edge is free of
vertical edge reaction and slope taken normal to the edge is everywhere zero. The first, second, and third
building blocks are driven by a distributed harmonic edge rotation imposed along the driven edges and
indicated by small circular arrows. Vertical edge reaction along these driven edges is everywhere zero. The
fourth building block is driven by a distributed vertical edge reaction indicated by small straight arrows. Slope
taken normal to this driven edge is forbidden, a condition indicated by a pair of very small circles adjacent to
the arrows.

We begin by examining the first building block. Slip—shear support is imposed along the edge, £ = 0. The
governing differential equation is written in dimensionless form as [4]

WE ) L LotwE ) L W(E )
on’* e oe!

+2¢ +¢ — ¢t W (& ) =0. (1)

Solution for this building block is taken in the form proposed by Levy as

K
W(é, 17) = Z Ym(”l) Cos emp 57 (2)

m=1,2

where we introduce the symbols emp = (m—1)n and emps = emp squared. It is noted that each term of the
series satisfies exactly the slip—shear boundary conditions imposed along the edges, £ = 0 and 1.
Substituting Eq. (2) into Eq. (1) it is found that the variables are separable and we obtain a fourth-order
ordinary homogeneous differential equation governing the quantities Y,,(1). Solutions to this equation are
well known and are found in Egs. (3) and (4). The constants of integration, 4,,,, B,,, etc., are evaluated through
enforcement of prescribed boundary conditions.
For 22> emps

Y () = Ay cosh B, + By sinh B, + Cpy €08 9,11 + Dy sin 1 3)
and, for 2> <emps
Y..(n) = Ay, cosh B,,n + By, sinh B,,n+ C,, cosh y,,n + Dy, sinh y,.n, 4)

where

2 _
m

$’[2* + emps] and yi = ¢*[1> — emps] or ¢*[emps — 1*]

whichever is positive.
It will be observed that, in view of the slip—shear conditions to be enforced along the edge, 7 = 0, B,, and D,,,
must equal zero.

a 3 ¢ g 3
o > o > — > (o) >
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Fig. 1. Schematic representation of building blocks employed in solving free vibration problem.
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Vertical edge reaction along the edge, # = 1, is expressed in dimensionless form as [4]
po_ oW L O WEn
= o 2 :
n onoc

Focusing attention on the first form of solution (Eq. (3)) and enforcing the condition of zero vertical edge
reaction along the driven edge it is readily shown that we may write for any value of m,

Ym(’?) = Am[COSh ﬁmn + 91”1 Cos Vm’/]]’ (6)

+ v (5)

where
2 12 .
ﬁm[ﬁm -V (/) €WlpS] Slnh ﬁm )
Vw2, + V< emps]sin p,,

We next consider the amplitude of the harmonic edge rotation imposed along the driven edge to be
expanded in a cosine series as employed in Eq. (2), i.e.,

oW(&,n)
on

91m = -

K
= > E, cos emp¢, (7)
n=1 m=1,2

where the quantity £, represents the driving coefficients. Enforcing the equality of Eq. (7), for any value of m,
it is readily shown that we may write

Yu(n) = Embrimlcosh B, + 0y cos y,,1], ®)
where
1
(B, sinh B, — 01,7, sin y,,) "

We next turn to the second form of the solution, Eq. (4). Following steps identical to those described above
it is shown that
For A><emps

Qllm =

Ym(’l) = EmHZZm) [COSh ﬁmr’ + 82"1 cosh ’ymn]a (9)
where
0, — _Pm (B2, — v*¢* emps) sinh B,
P s (32, — v* % emps) sinh 7,
and
1
020 =

(ﬁm sinh ﬁm + 02mym sinh Vm).

We thus have available the solution for response of the first building block to any harmonic rotation
imposed along the driven edge.

A solution for response of the second building block, also driven by a distributed harmonic edge rotation, is
easily extracted from that of the first. Here, we will utilize the subscript 7 in order to avoid confusion with the
first building block solution. The solution will take the form

K
W(En) = Yu(&)cos enpn, (10)

n=1,2

where enp = (n—1)n. The driving rotation amplitude is expressed as

AW, &
— = E, cosenpn. 11
% n;z P (11)
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Before extracting the solution for Y,(&) we must introduce certain temporary changes as follows. First
replace A% with 1%¢>. Next, temporarily replace ¢ with 1/¢. Solution for the quantities Y,(¢) are obtained from
the earlier quantities Y,,,() by replacing n with £. Quantities 64,,, 011, etc., are extracted from the quantities
01> 115 €tC., by replacing f3,, and y,, with their counterparts f,, and y, (Eq. (4)), also replace emps with enps
where enps = ((n—1)n)*.

We thus have available solution for response of the second building block to any harmonic rotation
imposed along the driven edge.

Solution for response of the third building block will differ from that of the first, only in that the quantity #
of the first solution should now be replaced by the quantity (1—#). Terms of this new solution should be
preceded by a negative sign in view of our sign conventions.

We turn finally to the fourth building block of Fig. 1. It is found advantageous to begin by solving for
response of the building block shown schematically in Fig. 2(a).

The solution is taken in the form

K
W(En) =Y Yuln)cosim— D&, (12)

m=1,2

A condition of zero slope is imposed along the edge, n = 1. This edge is driven by a distributed harmonic
vertical edge reaction as indicated in the figure. Solutions for the function Y,,(n) will have a form identical to
those of the first building block, however, here different boundary conditions are imposed along the driven
edge. Enforcing the condition of zero slope along the driven edge it is readily shown that for the first form of
solution we may write

Y () = Aw[cosh B, + 01, cos 7,1], (13)
where
9\ _ ﬁm sinh Bm
1m — : .
’yﬂl Sln ym

The superscript prime is introduced here to avoid confusion with the first building block. The distributed
amplitude of the vertical edge reaction driving the building block is expressed as

K
V(&) = Z E! cos(m — 1)né. (14)

m=1,2

Enforcing this edge condition, following a procedure similar to that described for the first building block, we
obtain
For 2?> emps

Yu(n) = E\, 0}, [cosh B,n+ 0}, cos 7,ml, (15)
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Fig. 2. Schematic representation of intermediate building block configurations: (a) driven along edge, 7 = 1 and (b) driven along the edge,
E=1.
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where
. —1
Bon(Br, — v*¢* emps)sinh B, + 0}, 7,,(y, + v*¢* emps)sin 3,

Following analogous steps for the case where 4> <emps, one obtains

11m —

Yu(n) = E\ 05, [cosh B, + 05, cosh y,1], (16)
where
o _ Businh f,
m Y SINh 7,
and
| -1

o B = v & emps)inh 4 0,73, — v empe)sinh 7,

Solution for the building block of Fig. 2(b) is extracted from the above solution in a manner identical to
that employed in extracting solution for the second building block of Fig. 1 from that of the first. Finally,
solution for the fourth building block of Fig. 1 is obtained by replacing the parameter # of this latest solution
(Fig. 2(b)) with the quantity 1—5 and preceding it with a negative sign.

Solutions for each of the building blocks of Fig. | are therefore now available.

2.2. Generation of free vibration eigenvalue matrix

The free vibration eigenvalue matrix associated with the set of building blocks of Fig. 1 is generated
following well-established procedures. The first set of homogeneous algebraic equations relating the driving
coefficients E,,, E,, etc., is obtained by requiring the net contribution of the four building blocks to bending
moment along the edge, n = 1, to vanish. To achieve this we expand the net contribution in an appropriate
trigonometric series. We then impose the condition that each term in this new boundary series should vanish.
It is appropriate to utilize the cosine series of Eq. (2) for this expansion. This gives rise to a set of K
homogeneous algebraic equations relating the 4K driving coefficients.

In a similar manner we require that net moment along the edges, £ = 1 and = 0, should vanish. This gives
rise to two additional sets of K homogeneous algebraic equations relating the driving coefficients. Finally, we
impose in a similar fashion, the condition that net displacement along the edge, ¢ = 0, must vanish. We thus
obtain a combined set of 4K homogeneous algebraic equations relating the 4K driving coefficients. The
coefficient matrix of this combined set constitutes our eigenvalue matrix. Free vibration eigenvalues are those
values of the dimensionless frequency, 4%, which cause the determinant of this matrix to vanish.

A schematic representation of the eigenvalue matrix is provided in Fig. 3. Subscripts p and ¢ are introduced
to indicate driving coefficients related to the third and fourth building blocks, respectively. Non-zero elements
of the matrix are indicated by short horizontal bars. Small figures inserted above the matrix segments indicate
the building blocks to which these segments pertain. Other small figures to the right of rows of matrix
segments indicate the plate edge along which boundary conditions are being enforced.

2.3. Plate forced vibration study

We now consider modifications to the above matrix which will permit computation of plate response to
forced lateral rigid body harmonic translational or torsional motion imposed at the base. This requires the
constructing of a set of non-homogeneous algebraic equations. The coefficient matrix of this non-
homogeneous set is comprised of the first 4K rows and columns of the matrix of Fig. 3. The right-hand-side of
this non-homogeneous set of equations comprises 4K elements. All of the first 3K elements of this column are
set equal to zero. The remaining elements of the column depend on the type of displacement excitation to
which the plate is subjected.
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Fig. 3. Schematic representation of eigenvalue matrix based on three-term solution series.

Consider first, for illustrative purposes, the case where we wish to subject the base to a uniform lateral
harmonic translation excitation of dimensionless amplitude equal to unity. We expand the amplitude of the
translation in a cosine series of the form

K
W(E Mo = Y Am cos(m — 1. (17)

m=1

It will be obvious, in view of the choice for dimensionless amplitude of base translation, that we will have,
A, =1, for m =1, with all other expansion coefficients equal zero. Accordingly, only one element of the
column on the right hand side of the above set of non-homogeneous equations will be non-zero, that is the
element 3K+ 1 from the top, which equals unity. It follows that having chosen a value for wy the driving
radian frequency, and hence a value for /Ifz, the dimensionless driving frequency, the steady-state response of
the driven plate is easily obtained by solving the above set of non-homogeneous equations. All boundary
conditions are satisfied to any desired degree of accuracy by simply increasing, K, the number of terms utilized
in the building block series solutions.

Before examining computed results it is appropriate to examine the same problem where base excitation of
the torsional or rocking type is employed. We will consider dimensionless amplitude of the base excitation to
vary linearly from +1 to —1, as we move along the y-axis located at the base of the plate. Amplitude of the
imposed harmonic displacement is expressed as,

WMo =1—21. (18)
Returning to the series of Eq. (17), it is easily shown that for each term m, with m> 1, we have

A fsin(m— D= B cos(im—m—1 sin(m— D=
An = 2{ (m—)n 2{ (m— D) (m— ]}

(19)

while with m = 1, the quantity 4,,, will equal zero. It will be appreciated that the dimensionless amplitude of
any imposed lateral or rocking motion may be set at any desired level by simply multiplying the above
coefficients, A4,,, by an appropriate scalar quantity.

Upon entering these quantities in the coefficient matrix, response of the plate to any linearly distributed
torsional motion of any driving frequency imposed at the base is readily computed.
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3. Experimental apparatus and test procedures

In parallel with the theoretical studies reported here an experimental test program was carried out. This
involved an experimental study of the steady-state response of two different cantilever plates subjected to
uniform lateral harmonic excitation at the clamped edge. Both plates were fabricated from T6061 aluminium
sheet. One plate was square, having dimensions 12 x 12in (30.48 x 30.48 cm) with a thickness of 0.0625in
(0.1588 cm). The other plate was rectangular having dimensions 12 x 15in (30.48 x 38.10cm) and the same
thickness. Each plate was clamped along a 12in edge while conducting tests. The plates were mounted on an
MB C-150 shaker by means of a specially prepared fixture. A view of the square plate mounted on the shaker
expander head is shown in Fig. 4. Two accelerometers, one for excitation input control and one for response
measurement were mounted as shown in the same figure. The response measuring accelerometer (Endevco
Model 2222C, 0.5g) was mounted at the mid point along the 12in plate edge opposite the driven edge. In
order to identify plate resonant frequencies, a low level (0.25 g constant acceleration input) sine sweep at the
sweep rate of 1.0 octaves/min was performed on each plate for the frequency bandwidth of 5-500 Hz. In
measuring the steady-state response of each plate at different excitation frequencies, the peak-to-peak input
displacement excitation level was maintained constant at a peak-to-peak value of 0.125in (0.3176 cm) for all
frequencies. In order to measure steady-state response precisely, sine dwells were performed on each plate with
0.01 Hz resolution and a slow sweep rate of 1.0 Hz/min.

4. Presentation of theoretical and experimental results

It is pointed out that for all computations reported here a value of 15 is assigned to the parameter K, the
number of terms employed in the building block series solutions. It is found that higher values assigned to
K do not lead to any significant changes in the first four significant digits of computed eigenvalues or plate
response calculations. Results of a convergence study related to computation of first mode eigenvalue for a
square cantilever plate are tabulated in Table 1.

The first computational step was to verify that the general analytical model described here computes
eigenvalues for the cantilever plate in good agreement with the well-known eigenvalues for this plate found in
the literature. Eigenvalues for symmetric and anti-symmetric free vibration modes of the cantilever plate, as
described earlier, are to be found in Refs. [3,4], for example. One may also wish to consult Ref. [S]. It is
sufficient to say here that comparisons made between numerous eigenvalues listed in the earlier publications
and corresponding eigenvalues computed by means of the general computational scheme described here are
found to be in good agreement, often up to four significant digits. Eigenvalues computed by the present
analytical scheme are compared with earlier published data for the first four free vibration modes of a square

Fig. 4. Photograph of shaker table with square aluminium plate mounted in test position.
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Table 1
Eigenvalue /> vs. number of terms K employed, in convergence study related to computation of first mode free vibration of square
cantilever plate.

K 7 9 11 13 15 17
22 3.453 3.456 3.457 3.458 3.458 3.458
Table 2

Comparison of computed eigenvalues for square cantilever plate.

Mode (v=10.333) (v=20.3)

Pres. Ref. [4] Pres. Ref. [5]
(1) 3.458 3.459 3.470 3.492
2 8.352 8.356 8.503 8.525
3) 21.08 21.09 21.28 21.43
4) 27.06 27.06 27.20 27.33

cantilever plate in Table 2. This comparison serves to provide a high level of confidence in the present
computational scheme. It will be noted that eigenvalues of Ref. [5] are slightly higher than those computed by
the present scheme. It is pointed out that the earlier eigenvalues were computed by employing the Ritz
method. It is agreed that this latter method always provides upper limits for the eigenvalues. Actual
eigenvalues will be equal to, or lower than these limits. It is therefore not surprising that results obtained by
the present method are somewhat lower.

We turn therefore to comparing theoretical and experimental results for response of the base driven
cantilever plate.

4.1. The uniform laterally driven plate

It will be appreciated that only symmetric modes, i.e., modes symmetric with respect to the plate central axis
running normal to the plate driven edge, will be excited with the uniform lateral excitation described here. We
will expect plate lateral response to rise rapidly as the excitation frequency is caused to approach plate
resonance frequencies. It is important, therefore, to begin by establishing resonant frequencies over the
frequency range of interest.

Using values of 0.333 and 10,000,000 1bs/in?, (6.895 x 10'° Pa) for the Poisson ratio and Young’s modulus,
respectively, and a value of 9.75 x 10~ 21bs/in® (2698 kg/m?) for the density of aluminium, theoretical values
for the first and second resonant frequencies of the 12 x 12 x 0.0625in thick aluminium cantilever plate are
found to be 14.56 and 88.74 Hz, respectively. The corresponding experimentally measured resonant
frequencies are found to be 14.25 and 86.6 Hz. It will be noted that there is very good agreement between
theoretical and experimental first mode frequencies. The second mode frequencies agree to within about
2 percent. This is still fairly good as it is generally accepted that mathematically formulated clamped edge
boundary conditions are difficult to achieve experimentally. It will also be appreciated that there will be a node
line running across the plate when in second symmetric mode free vibration. The mode shape will therefore be
more complicated than that of the first mode and will be more difficult to represent mathematically when
conducting free or forced vibration analysis. We recall that a peak-to-peak harmonic excitation amplitude of
0.1251in (0.3175cm) was used in all experimental tests. In view of the symmetry expected in plate response to
uniform lateral base excitation it was decided to characterize this response by measuring, or predicting, peak-
to-peak plate response at the mid-point along the plate edge opposite to the driven edge.

In Fig. 5, both theoretically predicted and experimentally measured peak-to-peak response are plotted as a
function of excitation frequency in a driving frequency range leading up to the first theoretical resonant
frequency. Limitations in the dynamic shaker and associated instrumentation preclude the running of
experimental tests at a frequency below about 5 Hz.



1012 D.J. Gorman, R. Singhal | Journal of Sound and Vibration 323 (2009) 1003-1015

It is seen in the figure that there is very good agreement between both sets of results for driving frequencies
up to about 12 Hz. Beyond 12 Hz it is seen that the excitation frequency is moving in toward the first plate
resonant frequency and both experimental and theoretical response amplitudes begin to rise rapidly. In
general one will not be interested in results this close to resonance. In this latter region electronic equipment
attached to the plate would almost certainly not be able to function satisfactorily. Furthermore, the theoretical
model is based on low amplitude response displacements where plate behaviour is still within the linear range.
The actual plate behaviour will become highly nonlinear as one moves in on the resonant frequencies.
Recognizing that other researchers may wish to compare data presented here with data computed by means of
their theoretical models we have presented driving frequencies and response amplitudes of Fig. 5 in digital
form in Table 3.

In Fig. 6 we see theoretically predicted and experimentally measured response behaviour for the same
square plate with excitation frequencies lying in a range between the first and second plate resonant
frequencies. Both sets of results fall off in amplitude as we move away from the first resonant frequency and
begin to rise again as we approach the second resonant frequency. Agreement between the two sets of results
in the intervening frequencies could be described as fairly good considering the complicated nature of the
problem.

We turn next to a non-square plate, i.e., a 12 x 15in aluminium plate of the same thickness, i.e., 0.0625 in.
Again, the plate is clamped and driven along a 12in edge and lateral displacements are measured at the
extremity of the plate central axis running normal to the driven edge. Using the same material elastic
properties, the first and second resonant frequencies are computed to be 9.286 and 57.39 Hz.

Both theoretically predicted and experimentally measured plate response as a function of driving frequency
are presented in Fig. 7 for the non-square plate. Driving frequencies range from approximately 5 Hz to a level
just below the first plate resonance. It is seen that there is very good agreement between the two sets of values
until we move into the area of resonance. As indicated earlier nonlinearities will begin to manifest themselves
as resonance is approached.

In Fig. 8 corresponding response data is presented for the same plate with driving frequencies in the range
between the first and second plate resonances. Both theoretical and experimental response curves are seen to
fall off as we move away from the first resonance and to begin rising again as we approach the second.

2.0 T T
First Res.—/
15 —
— A
(%]
z
=10 - —
ﬂ‘_ O
o
A
05 A o -
-2
0.0 | | | | |
0 5 10 15

Excitation frequency (Hz).

Fig. 5. Theoretical and experimental peak-to-peak lateral response as a function of excitation frequency for square aluminium plate
(lin = 25.4mm). Q indicates theoretical values and /\ indicates experimental values.

Table 3
Computed numerical values for Peak-to-Peak displacement for 12 x 12 x 0.0625in. aluminium plate vs. excitation frequency (Hz).

fr (Hz) 5 6 7 8 9 10 11 12 13
Disp. (in.) 0.151 0.165 0.184 0.210 0.246 0.300 0.387 0.543 0.902
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Fig. 6. Theoretical and experimental peak-to-peak lateral response as a function of excitation frequency for square aluminium plate
(1in = 25.4mm). Q indicates theoretical values and /) indicates experimental values.
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Fig. 7. Theoretical and experimental peak-to-peak lateral response as a function of excitation frequency for 12 x 15in aluminium plate
(lin = 25.4mm). Q indicates theoretical values and /) indicates experimental values.

Agreement between the two sets of values in the region removed from the plate resonances can again be said to
be fairly good in view of the complicated nature of the problem. The general character of the two response
curves are seen to be almost identical.

4.2. The uniform rotationally driven plate

In this section of the paper we focus attention on a cantilever plate where the clamped base is subjected to a
rocking or rotational forced harmonic motion. Experimental data for response of a plate to such excitation
was not possible to obtain due to limitations on the shake table and measuring equipment available.
Nevertheless, a theoretical study was carried out on the response to be expected from the 12 x 12in plate
discussed earlier.
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Fig. 9. Theoretical peak-to-peak rotational response as a function of excitation frequency for square aluminium plate (1 in = 25.4 mm).
O indicates theoretical values and /) indicates experimental values.

It will be appreciated that the response of a cantilever plate to such excitation must be anti-symmetric about
the plate central axis running normal to the driven base. One can characterize the plate response through
computation of the plate amplitude of harmonic motion to be expected at the outer corners of the plate, at the
extremities of the edge opposite the driven edge. Amplitudes will be identical for each corner. This is the
amplitude that is computed and plotted for the theoretical study undertaken here. Amplitudes of response are
readily computed utilizing the theoretical model described earlier coupled with Eq. (19).

In Fig. 9 the predicted outer corner peak-to-peak response is plotted as a function of excitation frequency
for the 12 x 12in plate. Theoretical first and second anti-symmetric mode resonant frequencies, based on plate
properties, are found to be 35.16 and 128.5 Hz, respectively. As expected, the computed response begins to rise
rapidly as the first resonant frequency is approached. It is particularly clear in this figure that a curve joining
the computed points would be projected to approach a value of 0.125 in peak-to-peak amplitude as the driving
frequency approaches zero.

In Fig. 10, computed response for the same plate with the driving frequency varying between the first and
second resonant frequencies is presented. The fall-off observed in response as we move away from the first
resonance and rapid rise as we approach the second is as expected.
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5. Discussion and conclusions

It has, over many years, been demonstrated that the superposition method constitutes a powerful
mathematical technique for conducting free vibration analysis of rectangular plates. It is demonstrated here,
for the first time, that it can also be exploited to obtain accurate analytical type solutions for rectangular plate
forced vibration problems. The present work serves, therefore, to open up new doors in the general field of
rectangular plate vibration. The problem investigated here involves a cantilever plate subjected to harmonic
displacement excitation along its clamped edge. As indicated earlier, the problem is of immediate interest in
connection with the projecting of lifetimes of electronic equipment mounted on such plates.

Experimental work reported serves to impart a high degree of confidence in the theoretical model and
analytical procedure employed.

It will be apparent, based on earlier free vibration work [4], that there are vast families of other rectangular
plate free vibration problems, involving different combinations of boundary conditions, which can be resolved
following analytical procedures similar to that described here. This includes plates driven by harmonic point
forces acting on plate edges or on plate lateral surfaces. Plate response to harmonic line loading, or forced
harmonic line displacements, are well within the realm of capabilities of the analytical procedure described. It
is anticipated that numerous problems of the type described are amenable to solution by means of the
mathematical modelling approach described here.
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